Author Archives: Richard Felder

Get new instructors off to a great start with mentoring (RF)

College instructors are generally taught nothing about teaching before they step into their first class.  The result is that most of them either end up learning to teach well (or at least adequately) by trial-and-error or they never learn at all. If you’re like most college graduates you should have no trouble thinking of some of your teachers–maybe lots of them–who were clearly in the second category.

There are better approaches to teaching new college teachers how to teach.[1] One is instructional development, in which guidance is provided to groups of new faculty in teaching workshops and learning communities. Another is mentoring, in which experienced faculty members provide individual guidance to new ones.

For many years, my department (Chemical and Biomolecular Engineering at N.C. State University) has introduced its new faculty members to teaching using both instructional development and mentoring. It starts between one and two weeks before the fall term, when the new CBE faculty member attends a four-day orientation workshop given by and for the combined faculties of the Colleges of Engineering and Sciences. The workshop is facilitated by outstanding teachers and researchers in both colleges, and covers effective teaching (2 days) and starting and building a research program and balancing the competing time demands of research, teaching, and personal life (2 days). Information about the  workshop is given in references cited below.[2] The rest of this post describes the mentoring.

During the fall or spring term following the orientation, the CBE newbie co-teaches the introductory chemical engineering course with one of a cadre of the best teachers in the department. That course is very well developed, so the burden of creating new course notes and assignments is considerably lower than it would be for a brand-new course preparation. The mentor and mentee teach either one section of the course together or separate sections that meet at different times.

Early in the course the mentor takes the lead, planning lectures, assignments, and tests and doing the lecturing. After several weeks, the mentee gradually takes on more of those responsibilities, so that by the end of the term the teaching is well distributed between the two instructors. The mentor and mentee observe each others’ class sessions throughout the semester, and once every week they meet for a debriefing session that may last anywhere from 15 minutes to an hour, depending on how much they have to talk about that week. The mentor never intervenes during class sessions taught by the mentee, even if the mentee gets into trouble and looks pleadingly at the mentor in hopes of being rescued. Compliments, critiques, and suggestions are shared only in the debriefings.

The formal mentoring relationship ends when the course does, after which the mentee is fully responsible for his or her own courses. However, the mentor frequently serves informally for at least one more term, occasionally observing and commenting on the mentee’s lectures and providing consulting advice on request.

Participation in the orientation workshop and the mentoring are voluntary, but virtually all new CBE Department faculty members for the last decade or so have gone through both. Many of them have won outstanding teacher awards in their first few years on the faculty and they have also been extraordinarily successful with their NSF CAREER Award proposals, which often rise or fall on the strength of their education components. Mentoring has consequently come to be considered a valuable service to the department, and mentors are given lighter course loads and/or relieved from other responsibilities like serving on a committee. Several mentees have gone on to subsequently become mentors.

This approach to helping new faculty members get their teaching off to a good start really works! It’s probably not a coincidence that several years after it was adopted, the CBE department was selected as the best teaching department in the university.

The references below provide additional information on new faculty support programs, including mentoring. (The list isn’t comprehensive–it includes only programs I’ve been directly involved with.) Glance through them, and consider whether the approach described might give your department the same benefits that the N.C. State CBE Department has enjoyed.

References

[1]  New faculty support programs

[2]. The N.C. State new faculty orientation workshop for engineering and the sciences

 

Tell Your Story (RF)

Everybody—ok, almost everybody—loves a good story. Parents learn quickly that if they want to entertain their children or settle them down, reading them a story is a surefire way to do it, even if (and sometimes especially if) the children have heard the story often enough to have it memorized word for word. Teachers in early childhood education all know that too, and they use it in their classes. They may have trouble getting their students to pay attention to multiplication tables and spelling, but let them start telling a good story and bang, those kids are with them!

The power of stories to capture attention continues into adulthood. Once when Rebecca was an education professor, I sat in on her class on children’s literature. I arrived a little late, getting there while she was reading “Owl Moon” to her class of third-year college students. I looked in the doorway and saw a class of five-year-old children in 21-year-old bodies. They were leaning forward in their seats, all eyes on Rebecca, many with mouths open, hanging on every word. It was fascinating. Then I found a seat in the back and in a couple of minutes I was just another five-year-old.

I’ve told lots of stories in my teaching, using them either to illustrate things I was teaching or to motivate the students’ interest in learning those things. The stories got high marks in my ratings and I always felt that they were helping the students learn, but it was just that—a feeling. Until recently, if you asked me for proof I might have mumbled something vague about links between active engagement and learning, but I wouldn’t have been able to produce explicit support for the educational value of stories.

A few days ago, however, I found some. First, a little oversimplified cognitive science. “Learning” involves transferring perceived information (such as lecture content) from working memory to long-term memory, from which it can later be retrieved and used. The primary basis for the brain’s decision to either store something in long-term memory or discard it is the learner’s prior associations with the information, especially emotional associations. The stronger and more numerous the associations, the more likely the new information is to be stored [1, pp. 2–3; 2, Ch. 3].

So what does all that have to do with stories? A recent blog post (“Write and don’t stop”) by the neurosurgeon Dr. David Hanscom has the answer. It cites research showing that presentation of information either directly (such as in readings and lectures) or in stories activates two centers in the brain that help make meaning out of words (the Broca’s and Wernicke’s areas), but stories also stimulate other areas of the brain that would be active if the listener were actually experiencing the events the stories describe. If a story refers to an action like kicking or running, the brain’s motor cortex lights up, and if the story mentions a visual image or sound or physical sensation, the corresponding sensory processing area of the brain is activated. Scientists have also found that a story can plant ideas, feelings, and emotions into listeners’ brains. In one study, the brains of a woman telling a story and of her listener were monitored, and as the story progressed the two brains went into sync with each other!

Those results don’t prove that if you go into your class and tell random stories you’ll see the learning you’re looking for. Reciting Owl Moon in your computational fluid dynamics class, for example, would probably not help the students make sense of the Navier-Stokes equations. The research suggests, though, that if you tell a story linking something you plan to teach to things the students are likely to know and—more importantly—care about, their physical, sensory, and emotional responses to the story can increase the odds that they will store what you teach in their long-term memories…which is to say, they’ll learn it!

OK, if Owl Moon is out, what kind of stories can you tell in a STEM course that might facilitate learning? The possibilities are infinite. Tell about important inventions or discoveries or familiar phenomena or devices that your course will explain. Tell about mistakes and lessons learned the hard way that what you’re getting ready to teach may help your students avoid— course-related stories of bridges and buildings collapsing, environmental catastrophes, satellites crashing on planets instead of going smoothly into orbit around them, ethical dilemmas,  multibillion dollar lawsuits, and so on. You can find such stories in newspapers and journals like Scientific American, case study collections like the one at the National Center for Case Study Teaching in Science, YouTube videos, and websites like How stuff works, How everything works, and Everyday engineering examples.

Besides helping students learn technical course content, stories can be used to steer them toward behaviors and attitudes that can help them succeed both in school and after they graduate. Rebecca and I put stories like that aimed at both students and instructors in Teaching and learning STEM [1, pp. 13, 17, 107, 131, 151, 187, 213, and 243]. Many of the stories include dialogues among hypothetical students that illustrate different strengths, weaknesses, and behavior patterns we want our readers to know about. If the readers recognize themselves and/or (if they are teachers) their students in the stories, we hope—and believe—that some will be motivated to consider the recommendations that follow the stories. You are welcome to share any of the stories with colleagues and students or to use them as models for stories of your own.

When possible, draw stories from your own experience, especially if you ever worked on projects and problems like the ones your students are likely to encounter after they graduate. Most students are worried that when they get out in the real world they’ll find that they haven’t been adequately prepared by school. If you can occasionally say, “Look, what it says in the book is ok as far as it goes, but let me tell you about something I once ran into that’s not in the book,” they’ll be all ears and grateful to you for the inside information.

In short, a well-chosen story is a pedagogical triple threat. It has the potential to promote technical knowledge acquisition and skill development, foster attitudes that favor academic and professional success, and provide practical career guidance well beyond what students normally get from conventional lectures and textbooks. Seems worth trying, doesn’t it?

References
1. Felder, R.M., and Brent, R. (2016). Teaching and learning STEM: A practical guide. (San Francisco: Jossey-Bass).
2. Sousa, D.A. (2011). How the brain learns (4th ed.). Thousand Oaks, CA: Corwin Press.

What’s it all about? (RF-RB)

We all have opinions—things we love, like, admire, dislike, are contemptuous of, can’t stand, and so on. The idea behind all blogs is an assumption that someone out there in Cyberland cares about what we think. This blog is no exception. Since you found your way to our website, we assume that you have some interest in different aspects of education and maybe some curiosity about our ideas. If so, great—we’ll be delighted to share what we think and to hear what you think about what we think, until either you or we get tired of it.

We’ll begin by giving you a snapshot of what you can and can’t expect to find on the blog. We’ll talk about good and not-so-good teaching methods; attributes and quirks of students, faculty members, and administrators; books and articles we think you might enjoy; and occasionally some stuff just for fun. Some of the ideas will be ours based on things we’ve learned from others, and some will come directly from others. We’ll invite your comments on anything we write, and will post those that stay within reasonable bounds of relevance and good taste.

We also have strong opinions and feelings about a lot of things that don’t directly relate to education, such as music, art, literature, food, travel, politics, and incredibly clever things our children and grandchildren have said and done. We’ll do our best to keep those opinions and feelings to ourselves, or at least to keep them offline.

For now, let us give you some hints about the education-related beliefs and biases in our book and our other publications that you’re likely to encounter if you follow this blog. If we had to choose a single word to describe our teaching philosophy, it would be balance. Good teaching involves striking a balance between teacher-centered instruction (lecturing) and learner-centered instruction (active learning), theory and real-world applications, visual and verbal presentation of information, live instruction (when possible) and technology-assisted instruction, individual work and teamwork (cooperative learning), convergent and divergent thinking and metacognition (thinking about thinking), and on into the night. The rest is details.

If you’re a skilled experienced teacher, you’ve already worked out a lot of the details, but suppose you’re either a relative newbie or a more experienced teacher who has up to now only taught traditionally. Let’s have a little Q and A:

You: How do I do each side of those dichotomies effectively?

Us: We wrote Teaching and Learning STEM and lots of papers and created this website to offer answers to that question. Here’s the approach we propose. Read some publications about teaching and maybe attend a teaching workshop or two, decide on a small number of new techniques you want to try, and plan how you’ll do it. If you have a mentor or colleague who is good at such things, run your plan by him or her and get feedback on it. Then try the new techniques a few times—enough so that you and your students begin to get accustomed to them—and see if you’re getting the results you’re hoping for. If you are, keep using the techniques; if you’re not, decide what if anything you’ll do differently next time you use them, or if you just don’t like them, drop them. Next course you teach, try one or two new methods. Over time, your teaching will steadily improve, which is the desired result.

You: What are the appropriate balances between lecturing and active learning, individual work and teamwork, and so on?

Us: Sorry, there’s no recipe. The optimal balance for each dichotomy depends heavily on the course subject, level, and specific content, the backgrounds and abilities of the students, and your background, areas and levels of expertise, teaching philosophy, and experience and level of comfort with different teaching approaches and techniques.

You: But if you’re not going to tell me the appropriate balances for a course I’m getting ready to teach, how am I supposed to find out?

Us: Same way you learned to do everything you’re good at now. Give it your best shot when you first do it, reflect on how it went, get feedback from colleagues and the students, and do it again. The more you do it, the better you’ll get at it. You may never reach that hypothetical optimal balance because it’s a shifting target, but as long as you keep getting better, you win.

And that’s that. Our plan is to post 2-3 times a month and more if the spirit moves us, with the posts ranging from quick teaching tips and quotes to longer pieces (but rarely as long as this one). Let’s see how it goes.