Can I just capture my whole lecture and put it online for my students? (RB)

In a word, no! (Well, technically you can, but it’s a bad idea.) A well-established guideline related to students’ attention span says that for online lecture clips and screencasts, shorter is better and about six minutes is a good target.

Marketing gurus at Wistia Blog have analyzed 564,710 videos with more than 1.3 billion plays and have found that (as you would expect) the longer the video, the less likely people are to complete it. Very short videos of less than two minutes hold a viewer’s attention best, but videos that short are generally not that useful for covering the amount of content we want to present. You can see the data here.

Okay, I hear you say—that’s well and good for marketing. Surely, I can use longer videos than THAT when I’m teaching college students.

Well, again, let’s look at the evidence. In a 2014 study, some MIT professors studied viewer persistence data from 6.9 million video sessions in four EdX MOOC offerings (Guo, et. al, 2014). They found that video length was “by far the most significant indicator of engagement” as measured by the length of time students watched the video and whether they attempted embedded assessment questions. Median engagement time was six minutes regardless of video length, leading to the authors’ recommendation that videos should be edited into short chunks of less than six minutes in length.

So what should you do in your short videos? The MIT folks have answers for that one, too. It turns out that tutorials in which you do step-by-step problem solving (think Khan Academy) are more effective than PowerPoint slides. (Then again, what isn’t, except for showing pictures, diagrams, and charts with minimal verbiage?) Filming in a more informal setting where you can make eye contact, such as with a laptop webcam in your office, may be more effective than a fancy professional studio production. Finally, it works better to plan these videos specifically for the online format instead of just videotaping a class and hoping for natural stopping points.

The next big question, of course, is how do I get students to watch the videos and truly engage with the material? There are answers aplenty for that question, which we’ll take up in a future blog. In the meantime, whatever you do, make those online videos short!

Guo, P.J., Kim, J., & Rubin, R. (2014). How video production affects student engagement: An empirical study of MOOC videos. Proceedings of the first ACM Conference on Learning@Scale. 

References on online and hybrid classes

  1. Boettcher, J.V., & Conrad, R.M. (2010). The online teaching survival guide: Simple and practical pedagogical tips. San Francisco: Jossey-Bass.
  2. Felder, R.M., and Brent, R. (2016). Teaching and learning STEM: A practical guide, Chapter 7. San Francisco: Jossey-Bass.
  3. Felder, R.M., & Brent, R. (2015). To flip or not to flip. Chemical Engineering Education, 4(3), 191-192.
  4. Means, B, Toyama, Y., Murphy, R., Bakia, M., and Jones, K. (2010). Evaluation of evidence-based practices in online learning: A meta-analysis and review of online learning studies. Washington, DC: U.S. Department of Education.
Please follow and like us:

Six Principles of Good Teaching. (RF-RB)

The blog posts on this website will vary all over the place. Some will pass along ideas we’ve gotten from books, papers, colleagues, students, and workshop participants, and others will be things we came up with ourselves in our combined 87 years of teaching, Some posts will be fairly long and stuffy and cluttered with things like semicolons and words like “notwithstanding” (we were practicing professors—old habits are hard to break), and others will be short enough to tweet. Some will have quotes and citations of papers and websites we like, and some will just be things on our minds. We’ll completely agree with each other about most of what shows up, and occasionally we’ll have different takes. (We’re married—old habits are hard to break.)

If there’s a common theme in the posts, it is finding answers to the question “How can I make my teaching better?” Between teaching, writing papers and a book (Teaching and Learning STEM: A Practical Guide), and giving over 400 teaching workshops, we’ve managed to generate a frightening number of answers, most of which rest on one or more of six basic principles. In this post we list the principles and then say a few general things about teaching and learning. The next posts in this series discuss the principles in greater detail and suggest ideas for how you can use them to improve your teaching.

First, here are the principles, with links to the posts that discuss them. If there’s no link, it means the post hasn’t been written yet.

Six principles of good teaching.

Learning and skill development are facilitated by:

  1. writing clear and observable learning objectives and sharing them with students;
  2. presenting new material in the context of students’ interests, goals, and prior knowledge;
  3. actively engaging students in class;
  4. balancing instruction (big picture and details, theory and applications, lecturing and active learning, visual and verbal presentation,…);
  5. providing extensive practice in targeted skills, continual assessment of skill levels, and feedback on the assessment outcomes;
  6. teaching students to practice metacognition (thinking about their thinking process).

So, the goal is good teaching, but what does that mean? For starters, what does it mean when teachers say they taught something? To some, it means that they presented information to students. “I taught Gauss’s law yesterday” is the same thing to them as “I lectured on Gauss’s law in class yesterday.” It doesn’t matter whether anyone learned it or not—if those instructors said it in class, they believe they taught it. We mean something totally different by “teaching,” namely, “causing learning to happen.” If you cover Gauss’s law in class and Student A learns it and Student B doesn’t, then you taught it to A but not to B.

If that’s teaching, what is good teaching? Is it teaching that equips all your students with the knowledge and skills you want them to have? Not necessarily—how much your students learn in your course isn’t entirely up to you. Everyone has limits on the knowledge and skills they can master. The best basketball coach in the world can’t train everyone on the team to play like Michael Jordan, any more than the best physics teacher can teach everyone in the class to think like Stephen Hawking. Even when an instructor sets learning goals that are reasonable for most students in the class, if the goals exceed the limits of some of the students, those students won’t meet the goals. Also, even if students are theoretically capable of meeting the  goals, if they don’t do the necessary studying, they won’t succeed.  So, good teaching is instruction that leads to good learning among students who are capable of meeting the instructor’s goals and who do the necessary work.

Now, all we have to do is figure out how to do that. Stay tuned.

P.S. A previous version of this post ended with that last line, and alert reader Lee Chilvers offered the following comment: “I would also add in the importance of building a rapport with the students; it makes all the other objectives easier.” We couldn’t possibly agree more, and in fact we devoted a significant portion of Teaching and Learning STEM (TLS) to the necessity of building rapport with students and suggesting ways to do it. We just weren’t astute enough to include it in this series of posts. Let’s remedy that now, with one important amendment to Lee’s wording:

Principle 0: Build a rapport with the students. If you don’t, nothing else you do in your class—including following Principles 1-6—is likely to lead to the widespread learning you’re hoping to see.

We’ll probably write some blog posts about building rapport. Until then, you can find our take on it in TLS.


  • Have you systematically tried to integrate one or more of those six principles in your teaching (or tutoring or training)? How has it worked for you?
  • How about Principle 0. Any thoughts about rapport with students and how to get it?
  • Based on your experience as a student and/or teacher, would you add additional principles? What are they?
  • Any other comments?

To respond to any of these questions, click on “Leave a reply” at the top of the post.


Please follow and like us:

Six Principles of Good Teaching. 1. Writing and Using Learning Objectives (RF-RB)

Here is a common and spectacularly ineffective technique instructors use to clarify their learning goals for their students. It’s a short response to a time-honored and universally detested (by instructors) student question:

Student: “Professor Postolotz, are we responsible for ____ on Wednesday’s test?
Instructor: Yes, and for everything else in the 273 pages of the text we’ve covered so far and for everything I’ve said and shown in class since Day 1.”

(Rich has been tempted to offer an equally unhelpful response, “No, it happened before you were born,” but so far he has managed to restrain himself.)

Students have a much better chance of learning in a course when they have a clear understanding of the instructor’s expectations. An proven effective way to communicate  expectations to students is to write learning objectives—general statements of tasks the students should be able to complete if they have learned what their instructor is trying to teach them. That observation is reflected in

Principle 1. Learning and skill development are facilitated by writing clear and observable learning objectives and sharing them with students.

A list of learning objectives begins with a stem, such as:

  • “By the end of this [chapter, month, course,…], the students should be able to…”
  • “In order to do well on the next exam, [you, the students] should be able to…”

followed by a comprehensive set of tasks that might show up on assignments and tests (or if the second stem is used, on the next exam). Each task statement should begin with an action verb, such as define, explain, interpret, calculate, derive, solve, model, troubleshoot, critique, or design.

To be most useful to instructors and students, learning objectives should meet two criteria: observability and clarity. For an objective to be considered observable, the instructor should be able to either see the students carrying out the specified task or see the products of its completion. Verbs like know, learn, understand, and appreciate are not directly observable, and so should not be used in learning objectives. For an objective to be judged clear, after the relevant course material has been covered in class, the students should have a good idea of whether or not they could carry out the task if called on to do so.

Instructors frequently have only a vague idea of what they want their students to be able to do, often defining it clearly only when they make up their exams. When that happens, they often end up testing the students on material that hasn’t been adequately covered in class and on assignments. When you have written a thorough set of learning objectives for a course, you should clearly understand exactly what you’ll need to teach—namely, how to do the tasks specified in the objectives. You’ll then be in a good position to get constructive alignment in the course (Biggs, 2003), meaning that all of the lectures, in-class activities, out-of-class assignments, and exams consistently address the same knowledge and skills.

Even if students have your objectives, there’s no guarantee that they’ll all be able to complete the specified tasks: they’ll still need the necessary aptitude and have to do the necessary studying. What the objectives do is maximize the chances that students with the aptitude who put in the studying will end by meeting the objectives.

To equip your students with a clear understanding of your learning goals for them, consider posting your objectives in study guides for exams one to two weeks before the exams are given. The objectives should encompass every type of task you might include on the exam, especially tasks that require high-level thinking and problem-solving skills, and every exam should include a subset of the types of questions and problems specified on the study guide. Instructors who have never done this are often afraid they’ll have to list hundreds of objectives in dozens of pages. You won’t: every study guide we’ve ever written has fit on one double-sided sheet of paper. (Reference 2 below gives examples.)

Even if you deliberately include more high-level problems on a study guide than you normally would, you should see a significant improvement in your students’ average test performance compared to what it was without the learning objectives. A bonus is that you’ll never have to deal with that dreaded student question (“Are we responsible for ___ on the test?”) again. The students will quickly learn that the answer is “If it’s on the study guide, you’re responsible for it; if it’s not, you’re not.”

References on writing and using learning objectives

  1. Biggs, J. (2003). Teaching for quality learning at university—What the student does, 2nd Edition. Buckingham: SRHE / Open University Press.
  2. Felder, R.M., and Brent, R. (2016). Teaching and learning STEM: A practical guide, Chapter 2. San Francisco: Jossey-Bass.
  3. Felder, R.M., and Brent, R. (2016). “Introduction to learning objectives.” A short online tutorial that defines learning objectives, gives reasons for writing them and different ways to use them, outlines different levels of complexity of objectives using Bloom’s Taxonomy, and gives directions for writing effective objectives at different levels. The tutorial also includes an online multiple-choice quiz on the tutorial contents that provides feedback on incorrect responses
  4. Felder, R.M., and Brent, R. (2003). “Designing and Teaching Courses to Satisfy the ABET Engineering Criteria.” Journal of Engineering Education, 2(1), 7-25. A review of educational assessment terminology (educational objectives, outcomes, learning objectives, etc.), followed by suggestions for formulating course learning objectives, designing instruction, and selecting assessment methods that address Outcomes 3a-3k of the system used to accredit all American engineering programs.

Return to the list of principles.

Please follow and like us:

Teaching Creative Thinking: 2. Alternatives to brainstorming (RB)

When most of us think about teaching creativity, we think of brainstorming. Brainstorming is widely used in industry, but it has some limitations. Ideas may be lost because too many people are talking at once; individuals may withhold ideas out of fear of being judged; and dominant individuals may keep others with possibly better ideas from contributing.[1] An alternative to brainstorming that helps avoid these limitations is brainwriting.[2] Students are given the same type of prompt, but instead of contributing ideas orally, each person writes a list of ideas. The lists are compiled and shared with the whole group, which then brainstorms additional ideas. Check out some prompts for brainwriting activities and ideas for how to conduct them in our first blog on creative thinking skills.

Another interesting alternative to brainstorming is bisociation. This technique challenges students to use two unrelated things to stimulate new ideas. The steps in the approach are:

  1. Choose a stimulus
  2. Capture what you know about it on a whiteboard
  3. Make associations or connections

Suppose you want to get ideas for improvements to a tool (stethoscope, garlic press, etc.). You choose an unrelated stimulus (wireless speaker, ruler, etc.) and have students explore everything they know about it. Then you ask students to make connections between the original item and the new stimulus. The result is a much richer source of ideas because of the unexpected connections. Felder[3] used a variation of this technique in an undergraduate fluid dynamics course, when he asked students to brainstorm ways to measure the viscosity of a fluid and gave double credit for methods that involved the use of a hamburger.

To find out more about bisociation, take a look at a short 6-minute video by Ken Bloemer of the KEEN Engineering Unleashed program at the University of Dayton.

Give one of these ideas a try in a class you teach. You’re bound to get students thinking in new ways and having fun doing it!

[1] Heslin, P.A. (2009). Better than brainstorming? Potential contextual boundary conditions to brainwriting for idea generation in organizations. Journal of Occupational and Organizational Psychology, 82, 129-145.

[2] Van Gundy, A.B. (1983). Brainwriting for new product ideas: An alternative to brainstorming. Journal of Consumer Marketing, 1, 67–74.

[3] Felder, R.M. (1987). On creating creative engineers. Engineering Education, 77(4), 222–227.

Please follow and like us:

Teaching Creative Thinking: 1. How can I teach my students to be creative when I’m not sure I am? (RB)

Creative thinking is a skill that faculty members are often nervous about teaching. If a suggestion is made that they incorporate instruction in it into their classes, they are likely to respond with (or at least to think) the title of this blog.

An easy way to integrate creative thinking into teaching is to include some idea generation activities in class. The most familiar activity of this type is brainstorming, in which participants come up with as many ways as they can to answer an open-ended question or solve a problem. Following are some illustrative brainstorming prompts.

List possible

  • ways to verify a [calculated value, derived formula]
  • ways that could be used to determine a physical property or variable [with no constraints, with no required instrument calibrations, as a function of one or more other variables, involving a stuffed bear]
  • uses for [any object, something that would normally go to waste]
  • ways to improve a [process or product, experiment, computer code]
  • real-world applications of a [theory, procedure, formula]
  • safety and environmental concerns in this [experiment, process, plant]
  • flaws or possible problems in a proposed [design, procedure, code, grading rubric]

Consider conducting a brainstorming activity for active learning groups in class. Tell the students to organize themselves into groups of 2–3, ask a question or pose a problem, and give the groups 2–3 minutes to come up with ideas. Then stop them and collect ideas on the board. (If you’re not sure how small groups would work in a large class, take a look at our introductory active learning tutorial at

Tips for brainstorming exercises[1]

  1. Focus on quantity. The goal of the idea-generation phase of problem solving is to generate as many ideas as possible, be they good, bad, ridiculous, or illegal. The more ideas there are, the more likely the best one is to occur.
  2. Welcome unusual ideas. A seemingly absurd idea can serve two vitally important purposes. It can move the idea generation process in a new and unexpected direction, possibly leading to good ideas that otherwise might not have come up. In addition, it can lead to laughter (approving, not mocking) and possibly serve as an incentive to come up with an even more far-fetched idea. Eventually the ideas may start flowing as fast as anyone can write them down.
  3. Build on the ideas of others. The power of brainstorming lies in the fact that hearing ideas often stimulates people to think of related but different ideas.
  4. Withhold criticism. Creative ideas flow best in a relaxed environment, and nothing kills a sense of relaxation more than trashing ideas as soon as they are raised. Once people start worrying about being criticized, the flow of ideas shuts down. If you think an idea is bad, don’t criticize it—just come up with a better one.

Answer to the blog title question. Yes, you can teach creative thinking without being creative yourself. The brainstorming activity described above provides a good illustration. You can ask students to brainstorm a list of anything, and evaluate the quantity, variety, and originality of their ideas, without having a trace of creativity. The fact is, though, that most faculty members—probably including you—are more creative than they give themselves credit for.

Additional reading on teaching creative thinking

Felder, R.M., and Brent, R. (2016). Teaching and learning STEM: A practical guide, pp. 222–230. San Francisco: Jossey-Bass.

Fogler, H.S., LeBlanc, S.E., & Rizzo, B. (2014). Strategies for creative problem solving (3rd ed.). Upper Saddle River, NJ: Pearson.

Additional reading on active learning

Felder, R.M., and Brent, R. (2016). Teaching and learning STEM: A practical guide, Ch. 6. San Francisco: Jossey-Bass.


[1] Osborn, A.F. (1963). Applied imagination: Principles and procedures of creative problem solving (3rd ed.). New York: Charles Scribner’s Sons.


Please follow and like us:

What’s it all about? (RF-RB)

We all have opinions—things we love, like, admire, dislike, are contemptuous of, can’t stand, and so on. The idea behind all blogs is an assumption that someone out there in Cyberland cares about what we think. This blog is no exception. Since you found your way to our website, we assume that you have some interest in different aspects of education and maybe some curiosity about our ideas. If so, great—we’ll be delighted to share what we think and to hear what you think about what we think, until either you or we get tired of it.

We’ll begin by giving you a snapshot of what you can and can’t expect to find on the blog. We’ll talk about good and not-so-good teaching methods; attributes and quirks of students, faculty members, and administrators; books and articles we think you might enjoy; and occasionally some stuff just for fun. Some of the ideas will be ours based on things we’ve learned from others, and some will come directly from others. We’ll invite your comments on anything we write, and will post those that stay within reasonable bounds of relevance and good taste.

We also have strong opinions and feelings about a lot of things that don’t directly relate to education, such as music, art, literature, food, travel, politics, and incredibly clever things our children and grandchildren have said and done. We’ll do our best to keep those opinions and feelings to ourselves, or at least to keep them offline.

For now, let us give you some hints about the education-related beliefs and biases in our book and our other publications that you’re likely to encounter if you follow this blog. If we had to choose a single word to describe our teaching philosophy, it would be balance. Good teaching involves striking a balance between teacher-centered instruction (lecturing) and learner-centered instruction (active learning), theory and real-world applications, visual and verbal presentation of information, live instruction (when possible) and technology-assisted instruction, individual work and teamwork (cooperative learning), convergent and divergent thinking and metacognition (thinking about thinking), and on into the night. The rest is details.

If you’re a skilled experienced teacher, you’ve already worked out a lot of the details, but suppose you’re either a relative newbie or a more experienced teacher who has up to now only taught traditionally. Let’s have a little Q and A:

You: How do I do each side of those dichotomies effectively?

Us: We wrote Teaching and Learning STEM and lots of papers and created this website to offer answers to that question. Here’s the approach we propose. Read some publications about teaching and maybe attend a teaching workshop or two, decide on a small number of new techniques you want to try, and plan how you’ll do it. If you have a mentor or colleague who is good at such things, run your plan by him or her and get feedback on it. Then try the new techniques a few times—enough so that you and your students begin to get accustomed to them—and see if you’re getting the results you’re hoping for. If you are, keep using the techniques; if you’re not, decide what if anything you’ll do differently next time you use them, or if you just don’t like them, drop them. Next course you teach, try one or two new methods. Over time, your teaching will steadily improve, which is the desired result.

You: What are the appropriate balances between lecturing and active learning, individual work and teamwork, and so on?

Us: Sorry, there’s no recipe. The optimal balance for each dichotomy depends heavily on the course subject, level, and specific content, the backgrounds and abilities of the students, and your background, areas and levels of expertise, teaching philosophy, and experience and level of comfort with different teaching approaches and techniques.

You: But if you’re not going to tell me the appropriate balances for a course I’m getting ready to teach, how am I supposed to find out?

Us: Same way you learned to do everything you’re good at now. Give it your best shot when you first do it, reflect on how it went, get feedback from colleagues and the students, and do it again. The more you do it, the better you’ll get at it. You may never reach that hypothetical optimal balance because it’s a shifting target, but as long as you keep getting better, you win.

And that’s that. Our plan is to post 2-3 times a month and more if the spirit moves us, with the posts ranging from quick teaching tips and quotes to longer pieces (but rarely as long as this one). Let’s see how it goes.

Please follow and like us: