Tag Archives: higher education

How can I do all this new stuff and still cover my syllabus? (RB & RF)

This question is the first one we get in just about in every workshop we give. Everyone worries that active learning exercises and other learner-centered methods will take too much time, and important course material won’t be covered. It’s a completely understandable fear, but there are some techniques you can use to do all the learner-centered teaching you want without sacrificing coverage of course content, and maybe even covering more.

Reduce coverage of nice-to-know material. Write learning objectives and use them to distinguish need-to-know from nice-to-know course material. Need-to-know material directly addresses your learning objectives and may be on your assignments and tests, and nice-to-know material doesn’t and won’t be. Make sure you cover all of your need-to-know material, and put nice-to-know material in any remaining time you have.

Felder, R.M. (2014). Why are you teaching that? Chem. Engr. Education, 48(3), 131-132. 

Felder, R. M, & Brent, R. (2016). Teaching and learning STEM: A practical guide (Chapter 2). San Francisco: Jossey-Bass.

Reduce in-class coverage of material to be memorized. If all you want students to do with information is memorize and repeat it on exams, put it on handouts or study guides to be read outside class, and quiz the students on it in class or online.

Felder, R. M, & Brent, R. (2016). Teaching and learning STEM: A practical guide (p. 34). San Francisco: Jossey-Bass.

Keep in-class activities short. Most activities should take between 10 seconds and three minutes. As few as two or three activities in a 50-minute class can make a huge difference in your students’ learning without seriously damaging your content coverage. If you want students to do something that will take more than three minutes, break it into chunks and process the chunks separately.

Felder, R. M., & Brent, R. Active learning tutorial

Felder, R. M, & Brent, R. (2016). Teaching and learning STEM: A practical guide (Chapter 6). San Francisco: Jossey-Bass.

Flip some course content. Present some course content in interactive online tutorials and self-tests before class, and use the class period for active learning that builds on the online material.

Felder, R. M., & Brent, R. (2015). To flip or not to flip. Chem. Engr. Education, 49(3), 191-192

Felder, R. M, & Brent, R. (2016). Teaching and learning STEM: A practical guide (pp. 142-146). San Francisco: Jossey-Bass.

Use handouts with gaps. Put your lecture notes on handouts interspersed with questions, incompletely labeled diagrams, and skipped steps in problem solutions. Have students read straightforward material themselves in class and ask questions rather than lecturing on everything. Use active learning to fill gaps.

Felder, R. M., & Brent, R. (2015). Handouts with Gaps. Chem. Engr. Education, 49(4), 239-240. 

Felder, R. M, & Brent, R. (2016). Teaching and learning STEM: A practical guide (pp. 81-84). San Francisco: Jossey-Bass.

Get new instructors off to a great start with mentoring (RF)

College instructors are generally taught nothing about teaching before they step into their first class.  The result is that most of them either end up learning to teach well (or at least adequately) by trial-and-error or they never learn at all. If you’re like most college graduates you should have no trouble thinking of some of your teachers–maybe lots of them–who were clearly in the second category.

There are better approaches to teaching new college teachers how to teach.[1] One is instructional development, in which guidance is provided to groups of new faculty in teaching workshops and learning communities. Another is mentoring, in which experienced faculty members provide individual guidance to new ones.

For many years, my department (Chemical and Biomolecular Engineering at N.C. State University) has introduced its new faculty members to teaching using both instructional development and mentoring. It starts between one and two weeks before the fall term, when the new CBE faculty member attends a four-day orientation workshop given by and for the combined faculties of the Colleges of Engineering and Sciences. The workshop is facilitated by outstanding teachers and researchers in both colleges, and covers effective teaching (2 days) and starting and building a research program and balancing the competing time demands of research, teaching, and personal life (2 days). Information about the  workshop is given in references cited below.[2] The rest of this post describes the mentoring.

During the fall or spring term following the orientation, the CBE newbie co-teaches the introductory chemical engineering course with one of a cadre of the best teachers in the department. That course is very well developed, so the burden of creating new course notes and assignments is considerably lower than it would be for a brand-new course preparation. The mentor and mentee teach either one section of the course together or separate sections that meet at different times.

Early in the course the mentor takes the lead, planning lectures, assignments, and tests and doing the lecturing. After several weeks, the mentee gradually takes on more of those responsibilities, so that by the end of the term the teaching is well distributed between the two instructors. The mentor and mentee observe each others’ class sessions throughout the semester, and once every week they meet for a debriefing session that may last anywhere from 15 minutes to an hour, depending on how much they have to talk about that week. The mentor never intervenes during class sessions taught by the mentee, even if the mentee gets into trouble and looks pleadingly at the mentor in hopes of being rescued. Compliments, critiques, and suggestions are shared only in the debriefings.

The formal mentoring relationship ends when the course does, after which the mentee is fully responsible for his or her own courses. However, the mentor frequently serves informally for at least one more term, occasionally observing and commenting on the mentee’s lectures and providing consulting advice on request.

Participation in the orientation workshop and the mentoring are voluntary, but virtually all new CBE Department faculty members for the last decade or so have gone through both. Many of them have won outstanding teacher awards in their first few years on the faculty and they have also been extraordinarily successful with their NSF CAREER Award proposals, which often rise or fall on the strength of their education components. Mentoring has consequently come to be considered a valuable service to the department, and mentors are given lighter course loads and/or relieved from other responsibilities like serving on a committee. Several mentees have gone on to subsequently become mentors.

This approach to helping new faculty members get their teaching off to a good start really works! It’s probably not a coincidence that several years after it was adopted, the CBE department was selected as the best teaching department in the university.

The references below provide additional information on new faculty support programs, including mentoring. (The list isn’t comprehensive–it includes only programs I’ve been directly involved with.) Glance through them, and consider whether the approach described might give your department the same benefits that the N.C. State CBE Department has enjoyed.

References

[1]  New faculty support programs

[2]. The N.C. State new faculty orientation workshop for engineering and the sciences

 

Teaching Creative Thinking: 2. Alternatives to brainstorming (RB)

When most of us think about teaching creativity, we think of brainstorming. Brainstorming is widely used in industry, but it has some limitations. Ideas may be lost because too many people are talking at once; individuals may withhold ideas out of fear of being judged; and dominant individuals may keep others with possibly better ideas from contributing.[1] An alternative to brainstorming that helps avoid these limitations is brainwriting.[2] Students are given the same type of prompt, but instead of contributing ideas orally, each person writes a list of ideas. The lists are compiled and shared with the whole group, which then brainstorms additional ideas. Check out some prompts for brainwriting activities and ideas for how to conduct them in our first blog on creative thinking skills.

Another interesting alternative to brainstorming is bisociation. This technique challenges students to use two unrelated things to stimulate new ideas. The steps in the approach are:

  1. Choose a stimulus
  2. Capture what you know about it on a whiteboard
  3. Make associations or connections

Suppose you want to get ideas for improvements to a tool (stethoscope, garlic press, etc.). You choose an unrelated stimulus (wireless speaker, ruler, etc.) and have students explore everything they know about it. Then you ask students to make connections between the original item and the new stimulus. The result is a much richer source of ideas because of the unexpected connections. Felder[3] used a variation of this technique in an undergraduate fluid dynamics course, when he asked students to brainstorm ways to measure the viscosity of a fluid and gave double credit for methods that involved the use of a hamburger.

To find out more about bisociation, take a look at a short 6-minute video by Ken Bloemer of the KEEN Engineering Unleashed program at the University of Dayton.

Give one of these ideas a try in a class you teach. You’re bound to get students thinking in new ways and having fun doing it!

[1] Heslin, P.A. (2009). Better than brainstorming? Potential contextual boundary conditions to brainwriting for idea generation in organizations. Journal of Occupational and Organizational Psychology, 82, 129-145.

[2] Van Gundy, A.B. (1983). Brainwriting for new product ideas: An alternative to brainstorming. Journal of Consumer Marketing, 1, 67–74.

[3] Felder, R.M. (1987). On creating creative engineers. Engineering Education, 77(4), 222–227. www.ncsu.edu/felder-public/Papers/Creative_Engineers.pdf.

Teaching Creative Thinking: 1. How can I teach my students to be creative when I’m not sure I am? (RB)

Creative thinking is a skill that faculty members are often nervous about teaching. If a suggestion is made that they incorporate instruction in it into their classes, they are likely to respond with (or at least to think) the title of this blog.

An easy way to integrate creative thinking into teaching is to include some idea generation activities in class. The most familiar activity of this type is brainstorming, in which participants come up with as many ways as they can to answer an open-ended question or solve a problem. Following are some illustrative brainstorming prompts.

List possible

  • ways to verify a [calculated value, derived formula]
  • ways that could be used to determine a physical property or variable [with no constraints, with no required instrument calibrations, as a function of one or more other variables, involving a stuffed bear]
  • uses for [any object, something that would normally go to waste]
  • ways to improve a [process or product, experiment, computer code]
  • real-world applications of a [theory, procedure, formula]
  • safety and environmental concerns in this [experiment, process, plant]
  • flaws or possible problems in a proposed [design, procedure, code, grading rubric]

Consider conducting a brainstorming activity for active learning groups in class. Tell the students to organize themselves into groups of 2–3, ask a question or pose a problem, and give the groups 2–3 minutes to come up with ideas. Then stop them and collect ideas on the board. (If you’re not sure how small groups would work in a large class, take a look at our introductory active learning tutorial at www.ncsu.edu/felder-public/Tutorials/Active/Active-learning.pdf.)

Tips for brainstorming exercises[1]

  1. Focus on quantity. The goal of the idea-generation phase of problem solving is to generate as many ideas as possible, be they good, bad, ridiculous, or illegal. The more ideas there are, the more likely the best one is to occur.
  2. Welcome unusual ideas. A seemingly absurd idea can serve two vitally important purposes. It can move the idea generation process in a new and unexpected direction, possibly leading to good ideas that otherwise might not have come up. In addition, it can lead to laughter (approving, not mocking) and possibly serve as an incentive to come up with an even more far-fetched idea. Eventually the ideas may start flowing as fast as anyone can write them down.
  3. Build on the ideas of others. The power of brainstorming lies in the fact that hearing ideas often stimulates people to think of related but different ideas.
  4. Withhold criticism. Creative ideas flow best in a relaxed environment, and nothing kills a sense of relaxation more than trashing ideas as soon as they are raised. Once people start worrying about being criticized, the flow of ideas shuts down. If you think an idea is bad, don’t criticize it—just come up with a better one.

Answer to the blog title question. Yes, you can teach creative thinking without being creative yourself. The brainstorming activity described above provides a good illustration. You can ask students to brainstorm a list of anything, and evaluate the quantity, variety, and originality of their ideas, without having a trace of creativity. The fact is, though, that most faculty members—probably including you—are more creative than they give themselves credit for.

Additional reading on teaching creative thinking

Felder, R.M., and Brent, R. (2016). Teaching and learning STEM: A practical guide, pp. 222–230. San Francisco: Jossey-Bass.

Fogler, H.S., LeBlanc, S.E., & Rizzo, B. (2014). Strategies for creative problem solving (3rd ed.). Upper Saddle River, NJ: Pearson.

Additional reading on active learning

Felder, R.M., and Brent, R. (2016). Teaching and learning STEM: A practical guide, Ch. 6. San Francisco: Jossey-Bass.

(RB)

[1] Osborn, A.F. (1963). Applied imagination: Principles and procedures of creative problem solving (3rd ed.). New York: Charles Scribner’s Sons.