Selling active learning to your students (RF)

When Instructors start using active learning in a class of students who aren’t used to it, the students generally don’t all welcome it, and some may be resistant or downright hostile to it. A key to defusing the resistance is to give them some advance preparation.

At the beginning of a class in which you’ll be using active learning, explain to the students what you’ll be doing, why you’re doing it, and what’s in it for them.

Before I retired from full-time teaching, my first-day sermonette about active learning went something like this:

Here’s how this class is going to work. Every so often I’ll stop my lecture and give you something to do—sometimes individually, more often in small groups—related to what I’ve been talking about. You’ll have a short time—as little as 10 seconds, as much as three minutes—to answer a question, begin a problem solution, carry out the next step in a derivation, or whatever it may be. I’ll stop you and call on one or more of you to share what you came up with, and then resume my lecture when I’ve gotten what I’m looking for or something even better.

So why am I doing this? I’m doing it for your benefit. The things I’ll ask you to do in these short activities will be the same things I’ll ask you to do on your assignments and exams…the hard parts. I have a stack of research proving that students taught this way have an easier time on homework and get better grades on exams than students taught with traditional nonstop lecturing. If any of you would like to see that research, let me know—I’d be happy to share it with you. Any questions?

You’ll probably never have a student who asks to examine the research, but offering to show it generally convinces all of them that you’re serious, and they’ll sit still for active learning long enough to see that you’re telling the truth about its benefits. If anyone ever does ask to examine it, refer them to:

Freeman, S., Eddy, S.L., McDonough, M., Smith, M.K., Okoroafor, N., Jordt, H., and Wenderoth, M.P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–8415.

Please follow and like us:

Give Sketchnotes a Try! (RB)

Sketchnotes of our 1-day teaching workshop by Margot Vigeant

Rich Felder and I presented a 1-day teaching institute at the ASEE Chemical Engineering Division Summer School at North Carolina State University recently to nearly 200 new faculty. One of our longtime colleagues, Margot Vigeant from Bucknell, sat in on the workshop and prepared a set of graphic notes, or sketchnotes. As soon as we saw them, we knew we wanted to share them here, and Margot kindly agreed. As you can see, the notes don’t include everything important, but they are a visual representation of the ideas and take-away messages that most struck Margot.

It seems to me that graphic notes or sketchnotes could be a great way to identify and capture key ideas in a presentation and create something you’ll return to again and again. It could be an effective way to takes notes for students who just can’t seem to get into the dry outline format they’ve been taught.

To get ideas about how to start making graphic notes, check out How to Get Started with Sketchnotes by Elisabeth Irgens. Another free resource is Sketchnoting for Teaching and Learning! For more examples, see 10 Brilliant Examples of Sketchnotes: Notetaking for the 21st Century. Happy notetaking!!

Please follow and like us:

Get new instructors off to a great start with mentoring (RF)

College instructors are generally taught nothing about teaching before they step into their first class.  The result is that most of them either end up learning to teach well (or at least adequately) by trial-and-error or they never learn at all. If you’re like most college graduates you should have no trouble thinking of some of your teachers–maybe lots of them–who were clearly in the second category.

There are better approaches to teaching new college teachers how to teach.[1] One is instructional development, in which guidance is provided to groups of new faculty in teaching workshops and learning communities. Another is mentoring, in which experienced faculty members provide individual guidance to new ones.

For many years, my department (Chemical and Biomolecular Engineering at N.C. State University) has introduced its new faculty members to teaching using both instructional development and mentoring. It starts between one and two weeks before the fall term, when the new CBE faculty member attends a four-day orientation workshop given by and for the combined faculties of the Colleges of Engineering and Sciences. The workshop is facilitated by outstanding teachers and researchers in both colleges, and covers effective teaching (2 days) and starting and building a research program and balancing the competing time demands of research, teaching, and personal life (2 days). Information about the  workshop is given in references cited below.[2] The rest of this post describes the mentoring.

During the fall or spring term following the orientation, the CBE newbie co-teaches the introductory chemical engineering course with one of a cadre of the best teachers in the department. That course is very well developed, so the burden of creating new course notes and assignments is considerably lower than it would be for a brand-new course preparation. The mentor and mentee teach either one section of the course together or separate sections that meet at different times.

Early in the course the mentor takes the lead, planning lectures, assignments, and tests and doing the lecturing. After several weeks, the mentee gradually takes on more of those responsibilities, so that by the end of the term the teaching is well distributed between the two instructors. The mentor and mentee observe each others’ class sessions throughout the semester, and once every week they meet for a debriefing session that may last anywhere from 15 minutes to an hour, depending on how much they have to talk about that week. The mentor never intervenes during class sessions taught by the mentee, even if the mentee gets into trouble and looks pleadingly at the mentor in hopes of being rescued. Compliments, critiques, and suggestions are shared only in the debriefings.

The formal mentoring relationship ends when the course does, after which the mentee is fully responsible for his or her own courses. However, the mentor frequently serves informally for at least one more term, occasionally observing and commenting on the mentee’s lectures and providing consulting advice on request.

Participation in the orientation workshop and the mentoring are voluntary, but virtually all new CBE Department faculty members for the last decade or so have gone through both. Many of them have won outstanding teacher awards in their first few years on the faculty and they have also been extraordinarily successful with their NSF CAREER Award proposals, which often rise or fall on the strength of their education components. Mentoring has consequently come to be considered a valuable service to the department, and mentors are given lighter course loads and/or relieved from other responsibilities like serving on a committee. Several mentees have gone on to subsequently become mentors.

This approach to helping new faculty members get their teaching off to a good start really works! It’s probably not a coincidence that several years after it was adopted, the CBE department was selected as the best teaching department in the university.

The references below provide additional information on new faculty support programs, including mentoring. (The list isn’t comprehensive–it includes only programs I’ve been directly involved with.) Glance through them, and consider whether the approach described might give your department the same benefits that the N.C. State CBE Department has enjoyed.

References

[1]  New faculty support programs

[2]. The N.C. State new faculty orientation workshop for engineering and the sciences

 

Please follow and like us:

Tell Your Story (RF)

Everybody—ok, almost everybody—loves a good story. Parents learn quickly that if they want to entertain their children or settle them down, reading them a story is a surefire way to do it, even if (and sometimes especially if) the children have heard the story often enough to have it memorized word for word. Teachers in early childhood education all know that too, and they use it in their classes. They may have trouble getting their students to pay attention to multiplication tables and spelling, but let them start telling a good story and bang, those kids are with them!

The power of stories to capture attention continues into adulthood. Once when Rebecca was an education professor, I sat in on her class on children’s literature. I arrived a little late, getting there while she was reading “Owl Moon” to her class of third-year college students. I looked in the doorway and saw a class of five-year-old children in 21-year-old bodies. They were leaning forward in their seats, all eyes on Rebecca, many with mouths open, hanging on every word. It was fascinating. Then I found a seat in the back and in a couple of minutes I was just another five-year-old.

I’ve told lots of stories in my teaching, using them either to illustrate things I was teaching or to motivate the students’ interest in learning those things. The stories got high marks in my ratings and I always felt that they were helping the students learn, but it was just that—a feeling. Until recently, if you asked me for proof I might have mumbled something vague about links between active engagement and learning, but I wouldn’t have been able to produce explicit support for the educational value of stories.

A few days ago, however, I found some. First, a little oversimplified cognitive science. “Learning” involves transferring perceived information (such as lecture content) from working memory to long-term memory, from which it can later be retrieved and used. The primary basis for the brain’s decision to either store something in long-term memory or discard it is the learner’s prior associations with the information, especially emotional associations. The stronger and more numerous the associations, the more likely the new information is to be stored [1, pp. 2–3; 2, Ch. 3].

So what does all that have to do with stories? A recent blog post (“Write and don’t stop”) by the neurosurgeon Dr. David Hanscom has the answer. It cites research showing that presentation of information either directly (such as in readings and lectures) or in stories activates two centers in the brain that help make meaning out of words (the Broca’s and Wernicke’s areas), but stories also stimulate other areas of the brain that would be active if the listener were actually experiencing the events the stories describe. If a story refers to an action like kicking or running, the brain’s motor cortex lights up, and if the story mentions a visual image or sound or physical sensation, the corresponding sensory processing area of the brain is activated. Scientists have also found that a story can plant ideas, feelings, and emotions into listeners’ brains. In one study, the brains of a woman telling a story and of her listener were monitored, and as the story progressed the two brains went into sync with each other!

Those results don’t prove that if you go into your class and tell random stories you’ll see the learning you’re looking for. Reciting Owl Moon in your computational fluid dynamics class, for example, would probably not help the students make sense of the Navier-Stokes equations. The research suggests, though, that if you tell a story linking something you plan to teach to things the students are likely to know and—more importantly—care about, their physical, sensory, and emotional responses to the story can increase the odds that they will store what you teach in their long-term memories…which is to say, they’ll learn it!

OK, if Owl Moon is out, what kind of stories can you tell in a STEM course that might facilitate learning? The possibilities are infinite. Tell about important inventions or discoveries or familiar phenomena or devices that your course will explain. Tell about mistakes and lessons learned the hard way that what you’re getting ready to teach may help your students avoid— course-related stories of bridges and buildings collapsing, environmental catastrophes, satellites crashing on planets instead of going smoothly into orbit around them, ethical dilemmas,  multibillion dollar lawsuits, and so on. You can find such stories in newspapers and journals like Scientific American, case study collections like the one at the National Center for Case Study Teaching in Science, YouTube videos, and websites like How stuff works, How everything works, and Everyday engineering examples.

Besides helping students learn technical course content, stories can be used to steer them toward behaviors and attitudes that can help them succeed both in school and after they graduate. Rebecca and I put stories like that aimed at both students and instructors in Teaching and learning STEM [1, pp. 13, 17, 107, 131, 151, 187, 213, and 243]. Many of the stories include dialogues among hypothetical students that illustrate different strengths, weaknesses, and behavior patterns we want our readers to know about. If the readers recognize themselves and/or (if they are teachers) their students in the stories, we hope—and believe—that some will be motivated to consider the recommendations that follow the stories. You are welcome to share any of the stories with colleagues and students or to use them as models for stories of your own.

When possible, draw stories from your own experience, especially if you ever worked on projects and problems like the ones your students are likely to encounter after they graduate. Most students are worried that when they get out in the real world they’ll find that they haven’t been adequately prepared by school. If you can occasionally say, “Look, what it says in the book is ok as far as it goes, but let me tell you about something I once ran into that’s not in the book,” they’ll be all ears and grateful to you for the inside information.

In short, a well-chosen story is a pedagogical triple threat. It has the potential to promote technical knowledge acquisition and skill development, foster attitudes that favor academic and professional success, and provide practical career guidance well beyond what students normally get from conventional lectures and textbooks. Seems worth trying, doesn’t it?

References
1. Felder, R.M., and Brent, R. (2016). Teaching and learning STEM: A practical guide. (San Francisco: Jossey-Bass).
2. Sousa, D.A. (2011). How the brain learns (4th ed.). Thousand Oaks, CA: Corwin Press.

Please follow and like us:

Can I just capture my whole lecture and put it online for my students? (RB)

In a word, no! (Well, technically you can, but it’s a bad idea.) A well-established guideline related to students’ attention span says that for online lecture clips and screencasts, shorter is better and about six minutes is a good target.

Marketing gurus at Wistia Blog have analyzed 564,710 videos with more than 1.3 billion plays and have found that (as you would expect) the longer the video, the less likely people are to complete it. Very short videos of less than two minutes hold a viewer’s attention best, but videos that short are generally not that useful for covering the amount of content we want to present. You can see the data here.

Okay, I hear you say—that’s well and good for marketing. Surely, I can use longer videos than THAT when I’m teaching college students.

Well, again, let’s look at the evidence. In a 2014 study, some MIT professors studied viewer persistence data from 6.9 million video sessions in four EdX MOOC offerings (Guo, et. al, 2014). They found that video length was “by far the most significant indicator of engagement” as measured by the length of time students watched the video and whether they attempted embedded assessment questions. Median engagement time was six minutes regardless of video length, leading to the authors’ recommendation that videos should be edited into short chunks of less than six minutes in length.

So what should you do in your short videos? The MIT folks have answers for that one, too. It turns out that tutorials in which you do step-by-step problem solving (think Khan Academy) are more effective than PowerPoint slides. (Then again, what isn’t, except for showing pictures, diagrams, and charts with minimal verbiage?) Filming in a more informal setting where you can make eye contact, such as with a laptop webcam in your office, may be more effective than a fancy professional studio production. Finally, it works better to plan these videos specifically for the online format instead of just videotaping a class and hoping for natural stopping points.

The next big question, of course, is how do I get students to watch the videos and truly engage with the material? There are answers aplenty for that question, which we’ll take up in a future blog. In the meantime, whatever you do, make those online videos short!

Guo, P.J., Kim, J., & Rubin, R. (2014). How video production affects student engagement: An empirical study of MOOC videos. Proceedings of the first ACM Conference on Learning@Scale. 

References on online and hybrid classes

  1. Boettcher, J.V., & Conrad, R.M. (2010). The online teaching survival guide: Simple and practical pedagogical tips. San Francisco: Jossey-Bass.
  2. Felder, R.M., and Brent, R. (2016). Teaching and learning STEM: A practical guideChapter 7. San Francisco: Jossey-Bass.
  3. Felder, R.M., & Brent, R. (2015). To flip or not to flip. Chemical Engineering Education, 4(3), 191-192.
  4. Means, B, Toyama, Y., Murphy, R., Bakia, M., and Jones, K. (2010). Evaluation of evidence-based practices in online learning: A meta-analysis and review of online learning studies. Washington, DC: U.S. Department of Education.
Please follow and like us:

Active learning (RF-RB)

Both cognitive science and classroom research have clearly shown that traditional lecturing, in which students are fire-hosed with information nonstop for 50- or 75-minute stretches or longer, does not facilitate much learning. A far more effective way to present information in class is to use active learning, in which traditional lecture segments alternate with brief activities in which the students reflect on key information (concepts and methods) in the lecture segments and then apply it, working either individually or in small groups. Less content may be presented in such sessions than when nonstop lecturing is used, but the amount of that content the students actually learn can be significantly greater.

Sometimes a participant at one of our presentations asks, “If you were to choose a single recommendation from your book or this workshop for us to try, what would it be?”  Our reply is, “Use active learning!”

The references on active learning that follow and several more posts in this blog discuss how to implement the approach in both face-to-face and online instruction, pitfalls to avoid when implementing it, and the massive body of research that attests to its effectiveness.

References on information processing in the brain

  1. Felder, R.M., and Brent, R. (2024). Teaching and learning STEM: A practical guide (2nd ed.), pp. 67–71. Jossey-Bass.
  2. Lovett, M.C., Bridges, M.W., DiPietro, M., Ambrose, S.A., and Norman, M.K. (2023). How learning works: Eight research-based principles for smart teaching. Jossey-Bass.
  3. Oakley, B., Rogowsky, B., and Sejnowski, T.J. (2021). Uncommon sense teaching: Practical insights in brain science to help students learn. Tarcher/Penguin.

References on active learning

  1. Felder, R.M., and Brent, R. (2024). Teaching and learning STEM: A practical guide (2nd ed.), (Chapter 6, and pp. 78–89, 103, 175–176). Jossey-Bass.
  2. Felder, R.M., and Brent, R. (n.d.) “Active learning: An introduction.” A short tutorial that defines active learning, gives examples of activities and formats, answers frequently-asked questions about the method, and includes a multiple-choice quiz on the tutorial contents that provides feedback on incorrect responses.
  3. (Video) Felder, R.M. (n.d.) Active learning with Richard Felder. A 12-minute video on YouTube in which Dr. Felder explains what active learning is and why it works and shows several illustrative clips of its use in a 125-student engineering class.
  4. (Video) Felder, R.M., and Brent, R. (n.d.) Creating partnerships: Active learning in an engineering class. A 35-minute video on YouTube containing clips of Dr. Felder using active learning in a large class, with narration by Drs. Felder and Brent and post-course comments from several of the students about the impact of the teaching method on their learning.
  5. Freeman, S., Eddy, S.L., McDonough, M., Smith, M.K., Okoroafor, N., Jordt, H., and Wenderoth, M.P. (2014). “Active learning increases student performance in science, engineering, and mathematics.” Proceedings of the National Academy of Sciences, 111(23), 8410–8415. A large meta-analysis of hundreds of research studies of active learning. The results conclusively demonstrate the superiority of active learning to traditional lecturing at facilitating almost every conceivable learning outcome other than short-term learning of facts.
Please follow and like us:

Teaching Creative Thinking: 2. Alternatives to brainstorming (RB)

When most of us think about teaching creativity, we think of brainstorming. Brainstorming is widely used in industry, but it has some limitations. Ideas may be lost because too many people are talking at once; individuals may withhold ideas out of fear of being judged; and dominant individuals may keep others with possibly better ideas from contributing.[1] An alternative to brainstorming that helps avoid these limitations is brainwriting.[2] Students are given the same type of prompt, but instead of contributing ideas orally, each person writes a list of ideas. The lists are compiled and shared with the whole group, which then brainstorms additional ideas. Check out some prompts for brainwriting activities and ideas for how to conduct them in our first blog on creative thinking skills.

Another interesting alternative to brainstorming is bisociation. This technique challenges students to use two unrelated things to stimulate new ideas. The steps in the approach are:

  1. Choose a stimulus
  2. Capture what you know about it on a whiteboard
  3. Make associations or connections

Suppose you want to get ideas for improvements to a tool (stethoscope, garlic press, etc.). You choose an unrelated stimulus (wireless speaker, ruler, etc.) and have students explore everything they know about it. Then you ask students to make connections between the original item and the new stimulus. The result is a much richer source of ideas because of the unexpected connections. Felder[3] used a variation of this technique in an undergraduate fluid dynamics course, when he asked students to brainstorm ways to measure the viscosity of a fluid and gave double credit for methods that involved the use of a hamburger.

To find out more about bisociation, take a look at a short 6-minute video by Ken Bloemer of the KEEN Engineering Unleashed program at the University of Dayton.

Give one of these ideas a try in a class you teach. You’re bound to get students thinking in new ways and having fun doing it!

[1] Heslin, P.A. (2009). Better than brainstorming? Potential contextual boundary conditions to brainwriting for idea generation in organizations. Journal of Occupational and Organizational Psychology, 82, 129-145.

[2] Van Gundy, A.B. (1983). Brainwriting for new product ideas: An alternative to brainstorming. Journal of Consumer Marketing, 1, 67–74.

[3] Felder, R.M. (1987). On creating creative engineers. Engineering Education, 77(4), 222–227.

Please follow and like us:

Teaching Creative Thinking: 1. How can I teach my students to be creative when I’m not sure I am? (RB)

Creative thinking is a skill that faculty members are often nervous about teaching. If a suggestion is made that they incorporate instruction in it into their classes, they are likely to respond with (or at least to think) the title of this blog.

An easy way to integrate creative thinking into teaching is to include some idea generation activities in class. The most familiar activity of this type is brainstorming, in which participants come up with as many ways as they can to answer an open-ended question or solve a problem. Following are some illustrative brainstorming prompts.

List possible

  • ways to verify a [calculated value, derived formula]
  • ways that could be used to determine a physical property or variable [with no constraints, with no required instrument calibrations, as a function of one or more other variables, involving a stuffed bear]
  • uses for [any object, something that would normally go to waste]
  • ways to improve a [process or product, experiment, computer code]
  • real-world applications of a [theory, procedure, formula]
  • safety and environmental concerns in this [experiment, process, plant]
  • flaws or possible problems in a proposed [design, procedure, code, grading rubric]

Consider conducting a brainstorming activity for active learning groups in class. Tell the students to organize themselves into groups of 2–3, ask a question or pose a problem, and give the groups 2–3 minutes to come up with ideas. Then stop them and collect ideas on the board. (If you’re not sure how small groups would work in a large class, take a look at our introductory active learning tutorial.

Tips for brainstorming exercises[1]

  1. Focus on quantity. The goal of the idea-generation phase of problem solving is to generate as many ideas as possible, be they good, bad, ridiculous, or illegal. The more ideas there are, the more likely the best one is to occur.
  2. Welcome unusual ideas. A seemingly absurd idea can serve two vitally important purposes. It can move the idea generation process in a new and unexpected direction, possibly leading to good ideas that otherwise might not have come up. In addition, it can lead to laughter (approving, not mocking) and possibly serve as an incentive to come up with an even more far-fetched idea. Eventually the ideas may start flowing as fast as anyone can write them down.
  3. Build on the ideas of others. The power of brainstorming lies in the fact that hearing ideas often stimulates people to think of related but different ideas.
  4. Withhold criticism. Creative ideas flow best in a relaxed environment, and nothing kills a sense of relaxation more than trashing ideas as soon as they are raised. Once people start worrying about being criticized, the flow of ideas shuts down. If you think an idea is bad, don’t criticize it—just come up with a better one.

Answer to the blog title question. Yes, you can teach creative thinking without being creative yourself. The brainstorming activity described above provides a good illustration. You can ask students to brainstorm a list of anything, and evaluate the quantity, variety, and originality of their ideas, without having a trace of creativity. The fact is, though, that most faculty members—probably including you—are more creative than they give themselves credit for.

Additional reading on teaching creative thinking

Felder, R.M., and Brent, R. (2016). Teaching and learning STEM: A practical guide, pp. 222–230. San Francisco: Jossey-Bass.

Fogler, H.S., LeBlanc, S.E., & Rizzo, B. (2014). Strategies for creative problem solving (3rd ed.). Upper Saddle River, NJ: Pearson.

Additional reading on active learning

Felder, R.M., and Brent, R. (2016). Teaching and learning STEM: A practical guide, Ch. 6. San Francisco: Jossey-Bass.

(RB)

[1] Osborn, A.F. (1963). Applied imagination: Principles and procedures of creative problem solving (3rd ed.). New York: Charles Scribner’s Sons.

 

Please follow and like us: